Simulation of adhesion-moments depending on the van der Waals interactions between rough particles and smooth walls in gaseous environment

Alexander Haarmann*, Eberhard Schmidt
University of Wuppertal
Contents

- Objects of the project
- Scanning principle of the simulation
- Particle examples and van der Waals adhesion force
- Flaws in the particle lattice
- Flattening and effective range of the van der Waals force
- Adhesion moment
Objects of the project

- Examination of the adhesion moment
- Particle on a wall
- Gaseous Environment
- Atomic scale
- Two different models:
 - Smooth particle
 - Rough particle
- Simulation to calculate the moment distribution
- Estimation of contact resistance versus external stresses
Scanning principle

- Scanning of a 3-dimensional space
- Three different principles
- Starting point is set → one atomic radius distance away from the point of origin of the coordinate system
- From starting point one line of points is scanned
- At the end of one row (marked by the diameter of the particle), scanning starts again in the next column
- A plane is built and then the planes are stacked to a space
- At every scanned point the simulation decides, whether there is an atom of the particle or not
- If this check is positive, the van der Waals force is calculated and added to a total adhesion force
Examples and adhesion force

Fig.1: 40 nm particle cut open

Fig.2: 103 nm particle surface

Equation for the van der Waals force between an atom and the wall:

\[F_{\text{atom-wall}} = \frac{A}{\pi \rho 2D^4} \]
Flaws in the particle lattice

- Simulated lattice is perfect
- Real lattices are not
- Lattice flaws must be built and were realised by a porosity:
 - Each atom gets a random number \(1 \leq x \leq 100\)
 - Porosity is set in percent
 - Atoms with a random number below the porosity value are ignored in the calculations
- Result: Lattices with high porosity (many flaws) build up less adhesion force
Flattening and effective force range

Fig. 4: Adhesion force against flattening factor for different particle diameters

Fig. 4: Adhesion force against flattening factor for different particle diameters.
Adhesion moment

- Not depending on the force direction for a smooth particle
- Depending on the force direction for a rough particle
- Anisotropic behaviour of the contact
Fig. 5: Adhesion moment against force angle, flattening factor 0.0, rough particle
Fig. 6: Adhesion moment against force angle, flattening factor 0.5, rough particle
Thank you for your attention.

Questions?

We would like to thank the German Research Foundation (DFG) for the financial support of the project.

Contact:
www.uws.uni-wuppertal.de
ahaarmann@uni-wuppertal.de